
Cache Me If You Can
Speed Up Your JVM With Project Valhalla
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“When the Java Virtual Machine was 
being designed in the early 1990s, 
the cost of a memory fetch was 
comparable in magnitude to 
computational operations such as 
addition. “

Early Days of Java
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Memory Fetch Addition

“With the multi-level 
memory caches and 
instruction-level 
parallelism of today’s 
CPUs, a single cache 
miss may cost as much 
as 1000 arithmetic issue 
slots — a huge increase 
in relative cost.”

Today

Memory Fetch Addition



Performance Sabotage
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Object References in the JVM

4

Java Stack
Java Heap



Identity
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•Java objects are unique

•Think of == vs Object.equals()

•Allows for field mutability and 
synchronization

•In a Valhalla world these are known as  
“Identity Class” or “Identity Object”



Value Class

• A class without identity

• Nullable

• Accessed atomically
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Class and instance fields are 
are implicitly final Synchronization on objects is 

not allowed

== compares fields and will have the 
same behavior as Object.equals 
when not overridden

value class Line2D { 
    Point2D st; 
    Point2D en; 
    ... 
} 
 
value class Point2D { 
    int x; 
    int y; 
    ... 
} 
 



Flattening Value Objects
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Flattened Type

• Flattening is not guaranteed, 
especially for types > 32 bits

• Objects must be accessed 
atomically to be flattened… in 
practice this means they will be 
quite small.



Null-Restricted Value Class

• Value classes with fields that cannot be 
null

• Opt-in to automatic creation of default 
field values

• Allows for flattening of larger value 
classes
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value class Line2D { 
    Point2D! st; 
    Point2D! en; 
    ... 
} 
 
value class Point2D { 
    int x; 
    int y; 
 
    public implicit Point2D(); 
} 
 

JEP Draft



Even Bigger Flattened Classes

� By default flattened value types need to be 
small enough to read and write atomically

� Non-volatile primitives (long and double) 
do not have these restrictions in Java

� Developers can opt-in to to remove this 
rule for programs that can tolerate non-
atomic object access
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value class Line2D { 
    Point2D! st; 
    Point2D! en; 
    ... 
} 
 
value class Point2D  
implements LooselyConsistentValue 

{ 
    int x; 
    int y; 
 
    public implicit Point2D(); 
} 
 



Get Involved
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OpenJDK Early Access Builds
https://jdk.java.net/valhalla/

Build OpenJ9 With Value Types Enabled
git clone https://github.com/ibmruntimes/openj9-openjdk-jdk.valuetypes.git
cd openj9-openjdk-jdk.valuetypes
bash ./get_source.sh -openj9-repo=<url> -openj9-branch=<name>
bash ./configure --with-boot-jdk=<jdkpath> --enable-inline-types
make images

OpenJ9 Build Instructions: github.com/eclipse-openj9/openj9/tree/master/doc/build-instructions

Eventually it will be available as part of IBM Semeru Runtimes: ibm.com/semeru-runtimes  

https://jdk.java.net/valhalla/
https://github.com/eclipse-openj9/openj9/tree/master/doc/build-instructions


Thank you
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