
Cache Me If You Can
Speed Up Your JVM With Project Valhalla

openjdk.org/projects/valhalla/design-notes/state-of-valhalla/01-background 2

“When the Java Virtual Machine was
being designed in the early 1990s,
the cost of a memory fetch was
comparable in magnitude to
computational operations such as
addition. “

Early Days of Java

0

500

1000

Memory Fetch Addition

“With the multi-level
memory caches and
instruction-level
parallelism of today’s
CPUs, a single cache
miss may cost as much
as 1000 arithmetic issue
slots — a huge increase
in relative cost.”

Today

Memory Fetch Addition

Performance Sabotage

en.algorithmica.org/hpc/cpu-cache/bandwidth/ 3

Limited by
CPU

Limited by L1 Limited by L2

Object References in the JVM

4

Java Stack
Java Heap

Identity

5openjdk.org/jeps/401

•Java objects are unique

•Think of == vs Object.equals()

•Allows for field mutability and
synchronization

•In a Valhalla world these are known as
“Identity Class” or “Identity Object”

Value Class

• A class without identity

• Nullable

• Accessed atomically

6openjdk.org/jeps/401

Class and instance fields are
are implicitly final Synchronization on objects is

not allowed

== compares fields and will have the
same behavior as Object.equals
when not overridden

value class Line2D {
 Point2D st;
 Point2D en;
 ...
}

value class Point2D {
 int x;
 int y;
 ...
}

Flattening Value Objects

7

Object Header

Point
x
y

Point
x
y

Line

start
end

Reference Type

Potential to flatten Point y

Line
x

y
x

start

end

Flattened Type

• Flattening is not guaranteed,
especially for types > 32 bits

• Objects must be accessed
atomically to be flattened… in
practice this means they will be
quite small.

Null-Restricted Value Class

• Value classes with fields that cannot be
null

• Opt-in to automatic creation of default
field values

• Allows for flattening of larger value
classes

8openjdk.org/jeps/8316779

value class Line2D {
 Point2D! st;
 Point2D! en;
 ...
}

value class Point2D {
 int x;
 int y;

 public implicit Point2D();
}

JEP Draft

Even Bigger Flattened Classes

� By default flattened value types need to be
small enough to read and write atomically

� Non-volatile primitives (long and double)
do not have these restrictions in Java

� Developers can opt-in to to remove this
rule for programs that can tolerate non-
atomic object access

openjdk.org/jeps/8316779 9

value class Line2D {
 Point2D! st;
 Point2D! en;
 ...
}

value class Point2D
implements LooselyConsistentValue

{
 int x;
 int y;

 public implicit Point2D();
}

Get Involved

10

OpenJDK Early Access Builds
https://jdk.java.net/valhalla/

Build OpenJ9 With Value Types Enabled
git clone https://github.com/ibmruntimes/openj9-openjdk-jdk.valuetypes.git
cd openj9-openjdk-jdk.valuetypes
bash ./get_source.sh -openj9-repo=<url> -openj9-branch=<name>
bash ./configure --with-boot-jdk=<jdkpath> --enable-inline-types
make images

OpenJ9 Build Instructions: github.com/eclipse-openj9/openj9/tree/master/doc/build-instructions

Eventually it will be available as part of IBM Semeru Runtimes: ibm.com/semeru-runtimes

https://jdk.java.net/valhalla/
https://github.com/eclipse-openj9/openj9/tree/master/doc/build-instructions

Thank you

Theresa Mammarella
@t_mammarella

tmammarella

theresa-m

